1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#![deny(clippy::missing_docs_in_private_items)]

//! This library is for generating L-Synth audio streams.
//! 
//! Here is an example of the basic setup of the LSynth chip. Whatever library you are using to play this audio should provide an audio buffer for L-Synth to populate, represented here by the `buffer` parameter of `audio_sample_request`
//! ```
//! use lsynth::*;
//! 
//! let mut chip = ChipState::new(4, ChipParameters::new(44_100, 0.5, 120.0));
//! 
//! chip.send_command(Command::SetAmplitude(0.5), 0);
//! chip.send_command(Command::SetFrequency(110.0), 0);
//! 
//! let mut frequency = 110.0;
//! let mut beat = 0;
//! 
//! let mut request_callback = move |chip: &mut ChipState| {
//!     beat += 1;
//!     while beat >= 4 {
//!         frequency += 110.0;
//! 
//!         chip.send_command(Command::SetFrequency(frequency), 0);
//!         beat -= 4;
//!     }
//! };
//! 
//! let mut audio_sample_request = move |buffer: &mut [f32]| {
//!     let mut sample_index = 0;
//!     
//!     while sample_index < buffer.len() {
//!         let generated_data = chip.generate(&mut buffer[sample_index..]).unwrap();
//!         sample_index += generated_data.generated;
//!         
//!         assert!(generated_data.generated != 0);
//!     
//!         if generated_data.remaining_samples == 0 { request_callback(&mut chip); }
//!     }
//! };
//! #
//! # let mut audio_stream = [0.0; 512];
//! # audio_sample_request(&mut audio_stream);
//! ```

pub mod waveform;
mod channel;
pub mod errors;
pub mod c_compatible;

use channel::ChannelState;
use errors::{InvalidChannelError, LSynthError, UnevenBufferSliceError};
use serde::{Serialize, Deserialize};

/// The different types of commands that can be sent to channels.
#[derive(Clone)]
#[derive(Serialize, Deserialize)]
#[repr(C)]
pub enum Command {
	/// An instruction to set the waveform of the channel.
	///
	/// | Index | Type              |
	/// |---|----------------|
	/// | 0 | Sine           |
	/// | 1 | Triangle       |
	/// | 2 | Rectified Sine |
	/// | 3 | Saw            |
	/// | 4 | Square         |
	/// | 5 | Pulse          |
	/// | 6 | Noise          |
	/// | 7 | Custom         |
	SetWaveform(usize),
	/// An instruction to set the frequency of the channel in hertz.
	SetFrequency(f32),
	/// An instruction to set the amplitude of the channel on a scale of 0..1
	SetAmplitude(f32),
	/// An instruction to set the panning of the channel on a scale of -1..1
	SetPanning(f32),
	/// An instruction to change the custom waveform stored in the channel.
	SetCustomWaveform(waveform::CustomWaveform),
	/// An instruction to set the phase of a waveform directly.
	SetPhase(f32),
	
	/// An instruction to change the amplitude of the channel instantly, instead of softly.
	ForceSetAmplitude(f32),
	/// An instruction to change the panning of the channel instantly, instead of softly.
	ForceSetPanning(f32),
	
	/// An instruction to gradually change the frequency of the channel from its current state to a target state with the specified rate of change.
	FrequencySlide(f32, f32),
	/// An instruction to gradually change the amplitude of the channel from its current state to a target state with the specified rate of change.
	AmplitudeSlide(f32, f32),
	/// An instruction to gradually change the panning of the channel from its current state to a target state with the specified rate of change.
	PanningSlide(f32, f32),
}

/// The current state of the LSynth chip.
pub struct ChipState {
	/// The states of all the channels currently operated by LSynth.
	channels: Vec<ChannelState>,
	/// Details how this chip is intended to operate.
	pub parameters: ChipParameters,
	/// How many frames are left in this tick.
	remaining_frames: f32,
}

/// Parameters detailing how an LSynth chip is intended to operate.
#[derive(Serialize, Deserialize)]
pub struct ChipParameters {
	/// The samplerate in hertz.
	samplerate: usize,
	/// Seconds per sample
	timestep: f32,
	/// The global amplitude of this chip on a scale of 0..1. Affects all channels.
	amplitude: f32,
	/// The number of samples there are in a single tick.
	tick_rate: f32,
	/// The number of samples there are in a single tick.
	tick_frames: f32,
}

/// Data returned by the generate function of ChipState.
#[repr(C)]
pub struct ChipGenerationData {
	/// How many samples were generated.
	pub generated: usize,
	/// How many samples were left in the tick when generation stopped.
	pub remaining_samples: usize,
}

impl ChipParameters {
	/// Creates a new set of chip parameters. Tick rate is ticks per second.
	pub fn new(samplerate: usize, amplitude: f32, tick_rate: f32) -> ChipParameters {
		ChipParameters {
			samplerate,
			timestep: 1.0/(samplerate as f32),
			amplitude,
			tick_rate,
			tick_frames: samplerate as f32 / tick_rate
		}
	}
	
	/// Converts the from ticks per second to samples per tick.
	fn update_tick_frames(&mut self) {
	 	self.tick_frames = self.samplerate as f32 / self.tick_rate
	}
	
	/// Sets the samplerate of the chip in hertz.
	pub fn set_sample_rate(&mut self, samplerate: usize) {
		self.samplerate = samplerate;
		self.timestep = 1.0/(samplerate as f32);
		self.update_tick_frames();
	}
	
	/// Sets the tick rate of the chip in hertz.
	pub fn set_tick_rate(&mut self, tick_rate: f32) {
		self.tick_rate = tick_rate;
		self.update_tick_frames();
	}
	
	/// Returns the number of samples in a single tick.
	pub fn get_tick_frames(&self) -> f32 {
	 	self.tick_frames
	}
}

impl ChipState {
	/// Creates a new LSynth chip.
	pub fn new(channel_count: usize, parameters: ChipParameters) -> ChipState {
		ChipState {
			channels: (0..channel_count).map(|_| ChannelState::new()).collect(),
			parameters,
			remaining_frames: 0.0,
		}
	}
	
	/// Writes a tick worth of interlaced stereo samples generated by the chip to the start of the provided slice,
	/// then returns a struct containing information about how many samples it generated,
	/// and how many samples still need to be generated to complete a tick.
	/// 
	/// If the number of remaining samples is anything but zero, then the tick was not completed.
	/// Commands can still be sent at this point, but they will occur in between ticks.
	pub fn generate(&mut self, buffer: &mut [f32]) -> Result<ChipGenerationData, LSynthError> {
		use rayon::prelude::*;
		
		if buffer.len() % 2 != 0 {
			return Err(LSynthError::UnevenBufferSlice(UnevenBufferSliceError{slice_length: buffer.len()}));
		}
		
		// Don't want to have to borrow this.
		let timestep = self.parameters.timestep;
		
		if self.remaining_frames < 1.0 {
			self.remaining_frames += self.parameters.get_tick_frames();
		}
		
		let frames_to_generate = (self.remaining_frames.floor() as usize).min(buffer.len() / 2);
		
		// Generate from each channel on its own thread.
		let frame_vecs: Vec<Vec<(f32, f32)>> = self.channels.par_iter_mut()
			.map(|channel| {
				let mut frames = vec![(0.0, 0.0); frames_to_generate];
				for value in frames.iter_mut() {
					*value = channel.sample();
					channel.advance(timestep);
				}
				frames
			})
			.collect();
		
		// Iterating over frame_vecs would give us access to one channel at a time, which is not helpful,
		// so instead we're iterating over the slice of the buffer we intend to fill.
		for (i, frame) in buffer.chunks_mut(2).enumerate() {
			if i >= frames_to_generate { break; }
			frame[0] = 0.0;
			frame[1] = 0.0;
			
			for channel in frame_vecs.iter() {
				let (l, r) = channel[i];
				frame[0] += l * self.parameters.amplitude;
				frame[1] += r * self.parameters.amplitude;
			}
			
			// Hard clip to prevent artifacts.
			frame[0] = frame[0].clamp(-1.0, 1.0);
			frame[1] = frame[1].clamp(-1.0, 1.0);
		}
		
		// Adds only the fractional part of tick_frames.
		self.remaining_frames -= frames_to_generate as f32;
		
		Ok(ChipGenerationData {generated: frames_to_generate * 2, remaining_samples: (self.remaining_frames.floor() as usize) * 2})
	}
	
	/// Executes a command on the given channel.
	pub fn send_command(&mut self, command: Command, channel: usize) -> Result<(), LSynthError> {
		if channel < self.channels.len() {
			self.channels[channel].execute_command(command)?;
			Ok(())
		}
		else {
			Err(LSynthError::InvalidChannel(InvalidChannelError {
				max_channels_of_chip: self.channels.len(),
				attempted_channel: channel,
			}))
		}
	}
}